Заголовок: Централизованное тестирование по математике, 2013
Комментарий:
Готово, можно копировать.
РЕШУ ЦТ — математика
Вариант № 34

Централизованное тестирование по математике, 2013

1.  
i

Среди чисел  минус 6; дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби ; 6 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка ; минус 0,6; ко­рень из 6 вы­бе­ри­те число, про­ти­во­по­лож­ное числу 6.

1) −6
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: 6 конец дроби
3) 6 в сте­пе­ни левая круг­лая скоб­ка минус 1 пра­вая круг­лая скоб­ка
4)  минус 0,6
5)  ко­рень из 6
2.  
i

Пусть O и O1  — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:

1) BO
2) BC
3) BA
4) BD
5) OO1
3.  
i

Среди точек O левая круг­лая скоб­ка 0;0 пра­вая круг­лая скоб­ка , B левая круг­лая скоб­ка 5;0 пра­вая круг­лая скоб­ка , C левая круг­лая скоб­ка минус ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та ; ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка , D левая круг­лая скоб­ка 0; минус 5 пра­вая круг­лая скоб­ка , E левая круг­лая скоб­ка минус 7;5 пра­вая круг­лая скоб­ка вы­бе­ри­те ту, ко­то­рая при­над­ле­жит гра­фи­ку функ­ции, изоб­ражённому на ри­сун­ке:

1) O
2) B
3) C
4) D
5) E
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  левая круг­лая скоб­ка целая часть: 7, дроб­ная часть: чис­ли­тель: 3, зна­ме­на­тель: 4 минус целая часть: 7, дроб­ная часть: чис­ли­тель: 17, зна­ме­на­тель: 24 пра­вая круг­лая скоб­ка умно­жить на 4,8 минус 0,7.

1) 0,5
2) 0,9
3) −0,9
4) −0,5
5) 2,4
5.  
i

Одно число мень­ше дру­го­го на 75, что со­став­ля­ет 15% боль­ше­го числа. Най­ди­те мень­шее число.

1) 490
2) 100
3) 580
4) 575
5) 425
6.  
i

На ри­сун­ке изоб­ра­же­ны раз­вер­ну­тый угол AOM и лучи OB и OC. Из­вест­но, что ∠AOC = 144°, ∠BOM = 136°. Най­ди­те ве­ли­чи­ну угла BOC.

1) 44°
2) 36°
3) 100°
4) 54°
5) 46°
7.  
i

Об­ра­зу­ю­щая ко­ну­са равна 32 и на­кло­не­на к плос­ко­сти ос­но­ва­ния под углом 60°. Най­ди­те пло­щадь бо­ко­вой по­верх­но­сти ко­ну­са.

1) 512 ко­рень из 3 Пи
2) 1024 Пи
3) 512 Пи
4) 256 Пи
5) 1024 ко­рень из 3 Пи
8.  
i

Рас­по­ло­жи­те числа 1,66; дробь: чис­ли­тель: 12, зна­ме­на­тель: 7 конец дроби ; 1, левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка в по­ряд­ке воз­рас­та­ния.

1) 1,66; 1, левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка ; дробь: чис­ли­тель: 12, зна­ме­на­тель: 7 конец дроби
2) 1, левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка ; 1,66; дробь: чис­ли­тель: 12, зна­ме­на­тель: 7 конец дроби
3) 1, левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка ; дробь: чис­ли­тель: 12, зна­ме­на­тель: 7 конец дроби ; 1,66
4) 1,66; дробь: чис­ли­тель: 12, зна­ме­на­тель: 7 конец дроби ; 1, левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
5)  дробь: чис­ли­тель: 12, зна­ме­на­тель: 7 конец дроби ; 1,66; 1, левая круг­лая скоб­ка 6 пра­вая круг­лая скоб­ка
9.  
i

Одна из сто­рон пря­мо­уголь­ни­ка на 7 см длин­нее дру­гой, а его пло­щадь равна 98 см2. Урав­не­ние, одним из кор­ней ко­то­ро­го яв­ля­ет­ся длина мень­шей сто­ро­ны пря­мо­уголь­ни­ка, имеет вид:

1) x в квад­ра­те плюс 7x плюс 98=0
2) x в квад­ра­те плюс 98x минус 7=0
3) x в квад­ра­те минус 7x минус 98=0
4) x в квад­ра­те плюс 7x минус 98=0
5) x в квад­ра­те минус 98x плюс 7=0
10.  
i

Точки A(6; -4) и B(2 ;1)  — вер­ши­ны квад­ра­та ABCD. Пе­ри­метр квад­ра­та равен:

1) 25
2) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та
3) 4 ко­рень из: на­ча­ло ар­гу­мен­та: 73 конец ар­гу­мен­та
4) 36
5) 2 ко­рень из: на­ча­ло ар­гу­мен­та: 41 конец ар­гу­мен­та
11.  
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 11 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 7 ко­рень из 7 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 7 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 77 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 8 ко­рень из 7 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 7 конец дроби

1)  дробь: чис­ли­тель: 7, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 7 конец дроби
2)  дробь: чис­ли­тель: 1, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 7 конец дроби
3)  ко­рень из: на­ча­ло ар­гу­мен­та: 77 конец ар­гу­мен­та
4) 22
5) 32
12.  
i

Ре­ше­ни­ем не­ра­вен­ства

 дробь: чис­ли­тель: 17, зна­ме­на­тель: 5 конец дроби минус дробь: чис­ли­тель: 3x в квад­ра­те плюс 2x, зна­ме­на­тель: 3 конец дроби мень­ше дробь: чис­ли­тель: 7 минус 5x в квад­ра­те , зна­ме­на­тель: 5 конец дроби

яв­ля­ет­ся про­ме­жу­ток:

1)  левая круг­лая скоб­ка 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
2)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; минус 3 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; 3 пра­вая круг­лая скоб­ка
4)  левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
5)  левая круг­лая скоб­ка минус бес­ко­неч­ность ; дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка
13.  
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 4.

1) 2
2) 3
3) 2 ко­рень из 3
4) 4 ко­рень из 3
5) 6
14.  
i

Упро­сти­те вы­ра­же­ние

 левая круг­лая скоб­ка 3 плюс дробь: чис­ли­тель: 9b в квад­ра­те плюс a в квад­ра­те минус c в квад­ра­те , зна­ме­на­тель: 2ab конец дроби пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка a плюс 3b плюс c пра­вая круг­лая скоб­ка умно­жить на 2ab.

1) 3b плюс a плюс c
2) 3b минус a минус c
3) 3
4) 3b плюс a минус c
5) 4a в квад­ра­те b в квад­ра­те
15.  
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 4 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка боль­ше левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка в квад­ра­те .

1) 12
2) −20
3) 0
4) 20
5) −12
16.  
i

ABCDA1B1C1D1  — пря­мо­уголь­ный па­рал­ле­ле­пи­пед такой, что AB = 16, AD = 2. Через се­ре­ди­ны ребер AA1 и BB1 про­ве­де­на плос­кость (см.рис.), со­став­ля­ю­щая угол 60° с плос­ко­стью ос­но­ва­ния ABCD. Най­ди­те пло­щадь се­че­ния па­рал­ле­ле­пи­пе­да этой плос­ко­стью.

1) 32 ко­рень из 2
2) 32
3) 32 ко­рень из 3
4) 16
5) 64
17.  
i

Сумма наи­боль­ше­го и наи­мень­ше­го зна­че­ний функ­ции

y= левая круг­лая скоб­ка 2 синус 2x плюс 2 ко­си­нус 2x пра­вая круг­лая скоб­ка в квад­ра­те

равна:

1) 4
2) 8
3) 6
4) 16
5) 2
18.  
i

Ко­рень урав­не­ния

 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1,8 пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 4 минус 3x, зна­ме­на­тель: 2x минус 7 конец дроби плюс ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 1,8 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка левая круг­лая скоб­ка 4 минус 3x пра­вая круг­лая скоб­ка \times левая круг­лая скоб­ка 2x минус 7 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка =0

(или сумма кор­ней, если их не­сколь­ко) при­над­ле­жит про­ме­жут­ку:

1)  левая квад­рат­ная скоб­ка минус 1; 0 пра­вая квад­рат­ная скоб­ка
2)  левая квад­рат­ная скоб­ка 0; 1 пра­вая круг­лая скоб­ка
3)  левая круг­лая скоб­ка 1; 2 пра­вая круг­лая скоб­ка
4)  левая квад­рат­ная скоб­ка 3; 4 пра­вая круг­лая скоб­ка
5)  левая квад­рат­ная скоб­ка 4; 5 пра­вая круг­лая скоб­ка
19.  
i

Ав­то­мо­биль про­ехал не­ко­то­рое рас­сто­я­ние, из­рас­хо­до­вав 24 л топ­ли­ва. Рас­ход топ­ли­ва при этом со­ста­вил 9 л на 100 км про­бе­га. Затем ав­то­мо­биль су­ще­ствен­но уве­ли­чил ско­рость, в ре­зуль­та­те чего рас­ход топ­ли­ва вырос до 12 л на 100 км. Сколь­ко лит­ров топ­ли­ва по­на­до­бит­ся ав­то­мо­би­лю, чтобы про­ехать такое же рас­сто­я­ние?

20.  
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x минус 3 конец ар­гу­мен­та минус ко­рень из: на­ча­ло ар­гу­мен­та: левая круг­лая скоб­ка x плюс 1 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка конец ар­гу­мен­та =0. В ответ за­пи­ши­те сумму его кор­ней (ко­рень, если он один).

21.  
i

Ос­но­ва­ние ост­ро­уголь­но­го рав­но­бед­рен­но­го тре­уголь­ни­ка равно 4, а синус про­ти­во­по­лож­но­го ос­но­ва­нию угла равен 0,6. Най­ди­те пло­щадь тре­уголь­ни­ка.

22.  
i

Пусть (x;y)  — це­ло­чис­лен­ное ре­ше­ние си­сте­мы урав­не­ний

 си­сте­ма вы­ра­же­ний 2y минус x= минус 7,9y в квад­ра­те плюс 6xy плюс x в квад­ра­те =9. конец си­сте­мы .

Най­ди­те сумму x+y.

23.  
i

Най­ди­те наи­боль­шее целое ре­ше­ние не­ра­вен­ства 5 в сте­пе­ни левая круг­лая скоб­ка 3x минус 44 пра­вая круг­лая скоб­ка умно­жить на 7 в сте­пе­ни левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка боль­ше 35 в сте­пе­ни левая круг­лая скоб­ка 2x минус 27 пра­вая круг­лая скоб­ка .

24.  
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния 32 синус 2x плюс 8 ко­си­нус 4x= минус 1 на про­ме­жут­ке  левая квад­рат­ная скоб­ка минус Пи ; дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая квад­рат­ная скоб­ка .

25.  
i

Гео­мет­ри­че­ская про­грес­сия со зна­ме­на­те­лем 9 со­дер­жит 10 чле­нов. Сумма всех чле­ном про­грес­сии равна 50. Най­ди­те сумму всех чле­нов про­грес­сии с чет­ны­ми но­ме­ра­ми.

26.  
i

Най­ди­те сумму кор­ней урав­не­ния

| левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 12 пра­вая круг­лая скоб­ка | умно­жить на левая круг­лая скоб­ка |x минус 4| плюс |x минус 14| плюс |x минус 9| пра­вая круг­лая скоб­ка =11 левая круг­лая скоб­ка x минус 7 пра­вая круг­лая скоб­ка \times
\times левая круг­лая скоб­ка 12 минус x пра­вая круг­лая скоб­ка .

27.  
i

Из го­ро­да А в город В, рас­сто­я­ние между ко­то­ры­ми 140 км, од­но­вре­мен­но вы­ез­жа­ют два ав­то­мо­би­ля. Ско­рость пер­во­го ав­то­мо­би­ля на 10 км/ч боль­ше ско­ро­сти вто­ро­го, но он де­ла­ет в пути оста­нов­ку на 20 мин. Най­ди­те наи­боль­шее зна­че­ние ско­ро­сти (в км/ч) пер­во­го ав­то­мо­би­ля, при дви­же­нии с ко­то­рой он при­бу­дет в В не позже вто­ро­го.

28.  
i

Из точки А про­ве­де­ны к окруж­но­сти ра­ди­у­сом 6 ка­са­тель­ная AB (B  — точка ка­са­ния) и се­ку­щая, про­хо­дя­щая через центр окруж­но­сти и пе­ре­се­ка­ю­щая ее в точ­ках D и C (AD < AC). Най­ди­те пло­щадь S тре­уголь­ни­ка ABC, если длина от­рез­ка AC в 3 раза боль­ше длины от­рез­ка ка­са­тель­ной. В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 10S.

29.  
i

Если  ко­си­нус левая круг­лая скоб­ка альфа плюс 13 гра­ду­сов пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 17 конец ар­гу­мен­та , зна­ме­на­тель: 17 конец дроби , 0 мень­ше альфа плюс 13 гра­ду­сов мень­ше 90 гра­ду­сов, то зна­че­ние вы­ра­же­ния 4 ко­рень из: на­ча­ло ар­гу­мен­та: 34 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка альфа плюс 58 гра­ду­сов пра­вая круг­лая скоб­ка равно ...

30.  
i

Ре­ши­те урав­не­ние

 дробь: чис­ли­тель: 40x в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 плюс 25 конец дроби =x в квад­ра­те плюс 2 ко­рень из 5 x плюс 9.

В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния x умно­жить на |x|, где x  — ко­рень урав­не­ния.